
Malaysian Journal of Mathematical Sciences 17(4): 673–690 (2023)
https://doi.org/10.47836/mjms.17.4.09

Malaysian Journal of Mathematical Sciences

Journal homepage: https://mjms.upm.edu.my

The Efficiency of Embedding-Based Attacks on the GGH Lattice-Based
Cryptosystem

Mandangan, A.1, Kamarulhaili, H.2, and Asbullah, M. A.∗3,4

1Mathematics, Real-Time Graphics and Visualization Laboratory,
Faculty of Sciences and Natural Resources, Universiti Malaysia Sabah, Sabah, Malaysia
2School of Mathematical Sciences, Universiti Sains Malaysia, Pulau Pinang, Malaysia

3Centre of Foundation Studies for Agricultural Science, Universiti Putra Malaysia, Selangor, Malaysia
4Laboratory of Cryptography, Analysis and Structure, Institute for Mathematical Research,

Universiti Putra Malaysia, Selangor, Malaysia

E-mail: ma_asyraf@upm.edu.my
∗Corresponding author

Received: 19 July 2022
Accepted: 5 October 2022

Abstract

The Goldreich-Goldwasser-Halevi (GGH) cryptosystem is declared broken due to the modified
versions of the embedding attacks, known as Nguyen’s σ, Nguyen’s 2σ and Lee-Hahn’s attacks.
Despite using the same approach as the original embedding attack, these attacks deployed dif-
ferent strategies and resulted in different performances for breaking the GGH cryptosystem. In
this paper, we described those strategies in detail. Moreover, we investigated the mathematical
factors behind these attacks’ ability and performance discrepancies. Mathematical proof exam-
ines and discusses the factors that triggered those variances. As a result, the expected lattice
gap and implemented lattice dimensions are mathematically proven as the factors that signifi-
cantly influenced these attacks’ performance. By demonstrating how the attacks manipulated
these factors, any lattice-based cryptosystem that relies on the hardness of the CVP could avoid
repeating the same slipup as the GGH. Hence, precautionary action could be proactively taken
to prevent it from being threatened by embedding-based attacks.

Keywords: lattice-based cryptosystem; post-quantumcryptography; embedding-based attacks;
lattices; embedded lattices; GGH cryptosystem.

https://mjms.upm.edu.my


A. Mandangan et al. Malaysian J. Math. Sci. 17(4): 673–690(2023) 673 - 690

1 Introduction

Lattice-based cryptography appears as one of themost promising alternatives in post-quantum
cryptography. Security of lattice-based cryptosystems relies on the hardness of lattice-based com-
putational problems such as the Closest-Vector Problem (CVP), Shortest-Vector Problem (SVP)
and Smallest-Basis Problem (SBP). Since the CVP is NP-hard while the SVP is NP-hard for poly-
nomial random reductions [8], these problems are potential candidates for creating one-way func-
tions. The lattice problems required minor modifications to create a trapdoor feature and prac-
tical implementation as a cryptosystem. Some variants of these problems become the security
backbone of lattice-based cryptosystems. One of the earliest lattice-based cryptosystems is the
Goldreich-Goldwasser-Halevi cryptosystem, known as the GGH cryptosystem. The security of
this cryptosystem relies on the hardness of the CVP-variant, defined as GGH-CVP [10]. Keeping
this problem in its original form, various attacks launched toward theGGHcryptosystem certainly
failed. Among all these attacks, the most promising attack was the embedding attack. Instead of
solving the GGH-CVP, this attack solves the easier version of this problem defined as GGH-SVP,
a variant of the Shortest-Vector Problem (SVP). Although both problems are hard, the SVP is
considered easier than the CVP [6]. By reducing the underlying GGH-CVP to its corresponding
GGH-SVP, the embedding attack worked better than other attacks on the GGH cryptosystem [5].
However, this embedding attack can be avoided by increasing the implemented lattice dimension
to 250 and beyond.

In 1999, [13] discovered a strategy that unleashed the embedding attack’s full potential for
breaking the GGH cryptosystem. Using this strategy, the derived GGH-CVP can be simplified to
a new variant, defined as theNguyenGGH -CVP. Like the original embedding attack, Nguyen’s em-
bedding attack also works by reducing the NguyenGGH -CVP to its corresponding NguyenGGH -
SVP. Solving theNguyenGGH -SVPwould immediately solve the correspondingNguyenGGH -CVP,
making the GGH cryptosystem broken. Nguyen’s embedding attack performed more efficiently
for breaking the GGH cryptosystem in the lattice dimensions up to 350. This attack can only
be avoided by increasing the implemented lattice dimension to 400 and beyond. About 10 years
later, another embedding-based attack was proposed by [9], known as Lee-Hahn’s embedding
attack. This attack simplifies the underlying NguyenGGH -CVP to a simpler form, defined as the
Lee-HahnGGH -CVP, which later is reduced to its corresponding Lee-HahnGGH -SVP. Solving the
Lee-HahnGGH -SVPwould immediately solve the Lee-HahnGGH -CVP and consequently break the
GGH cryptosystem in the lattice dimensions of 400 and beyond [9].

Despite using the same approach, Nguyen’s and Lee-Hahn’s embedding attacks performed
differently compared to the original embedding attacks. One of the main factors is the value of
the threshold parameter σ ∈ N. Nguyen’s embedding attacks consist of two types, known as
Nguyen’s σ and Nguyen’s 2σ embedding attacks which performed differently for breaking the
GGH cryptosystem. Therefore, this study is conducted to investigate the reasons behind these oc-
currences. The outcome of this study could be beneficial to any lattice-based cryptosystems, espe-
cially those that rely on the CVP-based variant as a security backbone to hinder any possible threat
by the embedding-based attacks. Due to its simplicity, the GGH cryptosystemwas considered the
most practical lattice-based cryptosystem [12]. Unfortunately, it receives less attention than other
lattice-based cryptosystems since the successful attacks by the Nguyen’s and Lee-Hahn’s embed-
ding attacks. If the security of the GGH cryptosystem can be upgraded tomake it immune to those
attacks, there is hope for the GGH cryptosystem to survive. As stated by [14], the general idea
behind the GGH cryptosystem is still worthwhile. The simplicity of the GGH cryptosystem also
should be appreciated. Therefore, the remedy to upgrade its security is worth exploring and dis-
covering. Recently, there is current interest in this cryptosystem to combat the embedding-based
attacks and bring the GGH cryptosystem back to the mainstream arena [11, 15, 1].
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This paper is organised as follows. The next section provides a light introduction to the GGH
cryptosystem, including the lattice-based computational problems underlying this cryptosystem.
Then, we explain the details of the embedding attacks and their improved version in Section 3.
The investigation is done in Section 4. This paper is concluded in Section 5, with suggestions for
future research that could be derived from this study.

2 GGH Lattice-based Cryptosystem

GGH cryptosystem is one of the earliest cryptosystems developed based on the lattice. Lattice
is defined as follows:

Definition 2.1. [2] For m,n ∈ N and m ≥ n, let B =
{⃗
b1, b⃗2, . . . , b⃗n

}
be a set of linearly independent

vectors b⃗1, b⃗2, . . . , b⃗n ∈ R
m. The lattice L ⊂ R

m that is generated by the set B is the set of all linear
combinations of the vectors b⃗1, b⃗2, . . . , b⃗n with integer scalars, i.e.,

L = L(B) =

{
n∑

i=1

ai⃗bi

∣∣∣∣ b⃗i ∈ B and ai ∈ Z,∀i = 1, 2, . . . , n

}
. (1)

The matrix B is called a basis of lattice L if its’ columns are linearly independent and it spans
the lattice L. If m = n, then the set B can be represented as a square matrix B ∈ R

n×n with
vectors b⃗1, b⃗2, . . . , b⃗n ∈ R

n as its columns. With a square matrix B as the basis, then the lattice
L (B) is referred to as a full-rank lattice.

Theorem 2.1. [7] For n ∈ N, a square matrix G ∈ R
n×n is invertible if and only if its columns

g⃗1, g⃗2, . . . , g⃗n ∈ R
n are linearly independent. The lattice L could be spanned by infinitely many lattice

bases and these bases are mathematically related by unimodular matrix.

Definition 2.2. [8] For n ∈ N, U ∈ Zn×n is called a unimodular matrix if det (U) = ±1.

Lemma 2.1. [5] For n ∈ N, let G,B ∈ R
n×n be non-singular matrices and U ∈ Z

n×n be a unimodular
matrix. The matrices G and B span the same lattice L ⊂ R

n, i.e., L (G) = L (B) = L ⊂ R
n, if and only if

these matrices are related as G = BU .

Proposition 2.1. [5] For n ∈ N, suppose that G,B ∈ R
n×n be bases of the lattice L where L (G) =

L (B) = L. The value of the det (L) is an invariant, i.e., det (L) = det (L (G)) = det (L (B)) where
det (L (G)) = |det (G)| and det (L (B)) = |det (B)|.

Definition 2.3. [13] For n ∈ N, let L ⊂ R
n be a full-rank lattice. The i-th minimum of the lattice L,

denoted as λi (L) ∈ R+, is the radius of the smallest sphere centred at the origin that is containing i linearly
independent lattice vectors.

From the successive minima λ1 (L) and λ2 (L), the lattice gap of the lattice L, denoted as
gap (L) ∈ R+, can be computed as follows:

Definition 2.4. [13] For n ∈ N, let L ⊂ R
n be a full-rank lattice and λ1 (L) , λ2 (L) ∈ R

+ denote the
first and second minima of the lattice L respectively. The lattice gap of the lattice L is the ratio between the

λ2 (L) and the λ1 (L), i.e., gap (L) =
λ2 (L)
λ1 (L)

∈ R+.
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The GGH cryptosystem is described in the following algorithms [5]:

Algorithm 1 Key generation algorithm of the GGH cryptosystem is done by the recipient.
Input: Security parameter n ∈ N.
Output: Public key (B,n, σ) and private key (G,U).
1: Generate a private basis G ∈ Rn×n.
2: Generate a unimodular matrix U ∈ Zn×n.
3: Compute a public basis B ∈ Rn×nasB = GU−1.
4: Determine a threshold parameter σ ∈ N.

Algorithm 2 Encryption algorithm of the GGH cryptosystem is done by the sender.
Input: Public key (B,n, σ).
Output: Ciphertext c⃗ ∈ Rn.
1: Generate an error vector e⃗ ∈ {−σ,+σ}n.
2: Generate a plaintext vector m⃗ ∈ Zn.
3: Encrypt the plaintext as

c⃗ = Bm⃗+ e⃗. (2)

Algorithm 3 Decryption algorithm of the GGH cryptosystem is done by the recipient.
Input: Ciphertext c⃗ ∈ Rn from the sender and private key (G,U).
Output: Plaintext m⃗ ∈ Zn.
1: Compute x⃗ ∈ Rn as x⃗ = G−1c⃗.
2: For all i = 1, . . . , n, round each entry xi ∈ x⃗ to the nearest integer ⌊xi⌉ ∈ Z such that

|xi − ⌊xi⌉ | ≤ 1
2 and form an integer vector ⌊ x⃗⌉ ∈ Zn.

3: Decrypt the ciphertext as
m⃗ = U ⌊ x⃗⌉ . (3)

3 Embedding-Based Attacks on The GGH Cryptosystem

The GGH cryptosystem is developed with security dependency on the variant of the CVP,
defined as the GGH-CVP. The CVP is defined as follows:

Definition 3.1. [5] For n ∈ N, let L ⊂ R
n be a lattice. Given a basis for the lattice L and a target vector

w⃗ ∈ Rn, the Closest-Vector Problem (CVP) is to find a non-zero vector x⃗ ∈ L such that ∥x⃗−w⃗∥ is minimal.

We explicitly define the GGH-CVP as follows:

Definition 3.2. (GGH-CVP) For n, σ ∈ N, let B ∈ Rn×n be a basis for the lattice L (B) = L ⊂ R
n and

c⃗ = v⃗+ e⃗ be a ciphertext vector where v⃗ ∈ L is a lattice vector and e⃗ ∈ {−σ,+σ}n is an error vector. Given
B, c⃗ and σ, find the lattice vector v⃗ such that ∥c⃗− v⃗∥ = σ

√
n.

One of the alternatives to breaking the security of lattice-based cryptosystems is solving the un-
derlying lattice-based computational problems. Embedding attacks work based on this approach.
Instead of directly solving the underlying GGH-CVP, the embedding attacks reduce this problem
to its corresponding SVP variant, defined as the GGH-SVP. The SVP is defined as follows:

676



A. Mandangan et al. Malaysian J. Math. Sci. 17(4): 673–690(2023) 673 - 690

Definition 3.3. [5] For n ∈ N, let L ⊂ R
n be a lattice. Given a basis for the lattice L, the Shortest-Vector

Problem (SVP) is to find a non-zero vector x⃗ ∈ L such that x is minimal, i.e., ∥x⃗∥ = λ1(L).

We explicitly define the GGH-SVP as follows:

Definition 3.4. (GGH-SVP) For n ∈ N, let B ∈ R
n×n with columns b⃗1, b⃗2, . . . , b⃗n ∈ R

n be a basis

for the lattice L (B) ⊂ R
n, c⃗ ∈ R

n be a ciphertext an X =

[
c⃗ b⃗1 b⃗2 . . . b⃗n
1 0 0 . . . 0

]
∈ R

(n+1)×(n+1) be a

basis for the lattice L′ (X) ⊂ R
n+1. Given B and c⃗, find a non-zero vector in the lattice L′ (X), denoted as

δ⃗1 ∈ L′ (X), such that λ1 (L
′ (X)) = ∥δ⃗1∥ where λ1 (L

′ (X)) is the first minimum of the lattice L′ (X).

The SVP and its variants can be solved or approximated using lattice-reduction algorithms
such as the LLL and BKZ algorithms. The lattice gap is one of the factors that could influence the
performance of the lattice-reduction algorithm. Experimentally, the larger the lattice gap is, the
more efficient the lattice-reduction algorithm could perform for solving the underlying SVP [3].

3.1 Original embedding attacks

The original embedding attacks consists of a sequence of two stages, namely the reduction and
solution stages. In the reduction stage, the underlying GGH-CVP in n-dimensional lattice L ⊂ R

n

is reduced to its corresponding GGH-SVP in an (n+ 1)-dimensional latticeL′ ⊂ R
n+1. Finally, the

solution stage works to solve the derived GGH-SVP using lattice-reduction algorithms. Consider

the public basisB ∈ Rn×n and the ciphertext c⃗ ∈ Rn. In the reduction stage, the vector
[
e⃗
1

]
∈ Rn+1

is embedded into the basisB to form a new basisX =

[
c⃗ b⃗1 b⃗2 . . . b⃗n
1 0 0 . . . 0

]
∈ R(n+1)×(n+1) for an

(n+ 1)-dimensional lattice L′ (X) ⊂ R
n+1. The lattice L′ (X) is referred to as embedded lattice.

[2] stated that, the new lattice L′ is expected to contain a shortest vector e⃗′ =

[
e⃗
η

]
∈ L′ where

∥e⃗∥ ≤ λ1(L)
2 and η = ∥e⃗∥. Thus, a short vector in the lattice L′ can be defined as follows:

Definition 3.5. For n ∈ N, let L ⊂ R
n be a lattice, c⃗, e⃗ ∈ R

n and v⃗ ∈ L such that c⃗ = v⃗ + e⃗. Suppose
that L′ ⊂ R

n+1 be an embedded lattice that is derived from the lattice L and e⃗′ ∈ L′ be a non-zero vector.
Then, e⃗′ is considered as a short vector in the lattice L′ if ∥e⃗′∥ < ∥e⃗∥+ η where η ∈ N and η < ∥e⃗∥.

Lemma 3.1. For n, σ ∈ N, let B ∈ R
n×n with columns b⃗1, b⃗2, . . . , b⃗n ∈ R

n be a basis for the lattice

L (B) ⊂ R
n, c⃗ ∈ Rn, e⃗ ∈ {−σ,+σ}n and v⃗ ∈ L (B) such that c⃗ = v⃗+e⃗. IfX =

[
c⃗ b⃗1 b⃗2 . . . b⃗n
1 0 0 . . . 0

]
∈

R
(n+1)×(n+1) is a basis for the embedded lattice L′ (X) ⊂ R

n+1, then
[
e⃗
1

]
is a short vector in the lattice

L′ (X).

The original embedding attacks consider the vector
[
e⃗
1

]
as the shortest non-zero vector in the

embedded latticeL′ (X). Finding such vector is the GGH-SVP. Thus, the solution stage is executed
to solve the derived GGH-SVP by reducing the basis X using lattice-reduction algorithm.

Lemma 3.2. For n ∈ N, let L′ (X) ⊂ R
n+1 be a lattice, λ1 (L

′ (X)) denotes the first minimum of the
lattice L′ (X) , δ⃗1 ∈ L′ (X) and e⃗ ∈ R

n be an error vector of the GGH-CVP. Suppose that the solution of
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the GGH-SVP is obtained as δ⃗1 ∈ L′ (X) such that λ1 (L
′ (X)) = ∥δ⃗1∥. If δ⃗1 =

[
e⃗
1

]
, then the solution for

the GGH-CVP can be obtained.

Lemma 3.3. For n, σ ∈ N, let B ∈ Z
n×n be a basis for the lattice L ⊂ R

n, c⃗ ∈ Z
n be a ciphertext vector,

m⃗ ∈ Z
n be a plaintext vector and e⃗ ∈ {−σ,+σ}n be an error vector such that c⃗ = Bm⃗ + e⃗. The vector

v⃗ = Bm⃗ ∈ L is the solution of the GGH-CVP. If the GGH-CVP is solved, then the GGH cryptosystem is
broken.

3.2 Nguyen’s embedding attacks

The Nguyen’s embedding attack has two additional stages prior to its reduction and solution
stages, named as elimination and simplification stages respectively. The elimination stageworks to
eliminate the error vector e⃗ from the encryption Equation (2). Using public parameters n, σ ∈ N,
a vector s⃗ ∈ {σ}n is formed and inserted into the encryption Equation (2) as c⃗+ s⃗ = Bm⃗+ e⃗+ s⃗.
Note that, the following equations hold,

c⃗+ s⃗−Bm⃗

σ
=

e⃗+ s⃗

σ
, (4)

c⃗+ s⃗−Bm⃗

2σ
=

e⃗+ s⃗

2σ
. (5)

Since e⃗ ∈ {−σ,+σ}n and s⃗ ∈ {σ}n, then e⃗+ s⃗ ∈ {0, 2σ}n. Thus, e⃗+ s⃗

σ
∈ {0, 2}n and

e⃗+ s⃗

2σ
∈ {0, 1}n. Since,

e⃗+ s⃗

σ
,
e⃗+ s⃗

2σ
∈ Zn,

then,

c⃗+ s⃗−Bm⃗

σ
,
c⃗+ s⃗−Bm⃗

2σ
∈ Zn,

as well. Consequently, the following congruences hold,

c⃗+ s⃗ ≡ Bm⃗ (mod σ), (6)
c⃗+ s⃗ ≡ Bm⃗ (mod 2σ). (7)

Clearly, the elimination stage had successfully eliminated the error vector e⃗ from the encryption
equation. The encryption Equation (2) which originally has two unknown vectors m⃗ and e⃗ has
been transformed to the congruences (6) and (7) which contain only a single unknown vector m⃗
respectively. Based on the congruences (6) and (7), the Nguyen’s embedding attack is launched
using two different moduli namely σ and 2σ. [13] proved that the congruences (6) and (7) are
solvable with very few solutions. With non-negligible probability, these congruences has a single
solution when gcd (|det (B)| , σ) = 1 and gcd (|det (B)| , 2σ) = 1. Thus, assume that the solutions
of the congruences (6) and (7) respectively are obtained as the following,

m⃗ ≡ B−1 (c⃗+ s⃗) (mod σ), (8)
m⃗ ≡ B−1 (c⃗+ s⃗) (mod 2σ). (9)
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Denote B−1 (c⃗+ s⃗) mod σ = m⃗σ and B−1 (c⃗+ s⃗) mod 2σ = m⃗2σ where m⃗σ ∈ Z
n
σ and m⃗2σ ∈

Z
n
2σ respectively. Although m⃗ ̸= m⃗σ ̸= m⃗2σ , the vectors m⃗σ and m⃗2σ are considered as partially

decrypted plaintext since

m⃗ ≡ m⃗σ (mod σ), (10)
m⃗ ≡ m⃗2σ (mod 2σ). (11)

Once the vectors m⃗σ and m⃗2σ are obtained, the Nguyen’s embedding attack moves to its sim-
plification stage. The vectors m⃗σ and m⃗2σ are multiplied with the public basis B respectively.
Then, the vectors Bm⃗σ, Bm⃗2σ ∈ R

n are respectively inserted into the encryption Equation (2) as
follows,

c⃗−Bm⃗σ = B (m⃗− m⃗σ) + e⃗, (12)
c⃗−Bm⃗2σ = B (m⃗− m⃗2σ) + e⃗. (13)

The congruences (10) and (11) imply the existence of k⃗1, k⃗2 ∈ Zn such that,

m⃗− m⃗σ = σk⃗1, (14)

m⃗− m⃗2σ = 2σk⃗2. (15)

Substituting Equation (14) into congruence (15) and Equation (12) into congruence (13) re-
spectively yield,

c⃗−Bm⃗σ

σ
= Bk⃗1 +

e⃗

σ
, (16)

c⃗−Bm⃗2σ

2σ
= Bk⃗2 +

e⃗

2σ
. (17)

For simplicity, denote c⃗−Bm⃗σ

σ
= p⃗1 ∈ R

n and c⃗−Bm⃗2σ

2σ
= p⃗2 ∈ R

n. Since c⃗, B, m⃗σ, m⃗2σ and σ

are known information, then p⃗1 and p⃗2 are known vectors. Note that, B is a basis for the lattice
L (B) ⊂ R

n and k⃗1, k⃗2 ∈ Z
n, then Bk⃗1 = q⃗1 ∈ L (B) and Bk⃗2 = q⃗2 ∈ L (B). Since k⃗1 and k⃗2

are unknown vectors, then q⃗1 and q⃗2 are also unknown lattice vectors. Although the value of the
parameter σ is known, the arrangement of the entries−σ and+σ in the error vector e⃗ ∈ {−σ,+σ}n
is privately determined by Bob. Thus, the following vectors are unknown vectors,

ε⃗1 =
e⃗

σ
∈
{
−σ

σ
,+

σ

σ

}n

= {−1, 1}n ,

ε⃗2 =
e⃗

2σ
∈
{
− σ

2σ
,+

σ

2σ

}n

=

{
−1

2
,
1

2

}n

.

Now, Equations (16) and (17) can be simply rewritten as follows,

p⃗1 = q⃗1 + ε⃗1, (18)
p⃗2 = q⃗2 + ε⃗2, (19)

where p⃗1, p⃗2 ∈ Rn, q⃗1, q⃗2 ∈ L (B) , ε⃗1 ∈ {−1, 1}n and ε⃗2 ∈
{
−1

2
,
1

2

}n

.

Proposition 3.1. Forn, σ ∈ Nwheren, σ > 1, letB ∈ Rn×n be a basis for the latticeL (B) ⊂ R
n, p⃗1, p⃗2 ∈

R
n such that p⃗1 = q⃗1 + ε⃗1 and p⃗2 = q⃗2 + ε⃗2 where q⃗1, q⃗2 ∈ L (B) , ε⃗1 = {−1, 1}n and ε⃗2 ∈

{
−1

2
,
1

2

}n

.

If the GGH-CVP distance is ∥c⃗− v⃗∥ = σ
√
n, then ∥p⃗2 − q⃗2∥ < ∥p⃗1 − q⃗1∥ < ∥c⃗− v⃗∥ where c⃗, v⃗ ∈ Zn.
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Proof. Given that p⃗1 = q⃗1 + ε⃗1 and p⃗2 = q⃗2 + ε⃗2. These imply that p⃗1 − q⃗1 = ε⃗1 and p⃗2 − q⃗2 = ε⃗2.
Hence,

∥p⃗1 − q⃗1∥ = ∥ϵ⃗1∥ =
√

(±1)2 + (±1)2 + . . .+ (±1)2︸ ︷︷ ︸
added n times

=
√
n,

and

∥p⃗2 − q⃗2∥ = ∥ϵ⃗2∥ =

√√√√√√
(
±1

2

)2

+

(
±1

2

)2

+ . . .+

(
±1

2

)2

︸ ︷︷ ︸
added n times

=

√
n

2
.

Suppose that ∥c⃗− v⃗∥ = σ
√
n. Since n, σ ∈ N and n, σ > 1, thus,

√
n

2
<

√
n < σ

√
n.

This implies that,

∥p⃗2 − q⃗2∥ < ∥p⃗1 − q⃗1∥ < ∥c⃗− v⃗∥.

Observe that, Equations (18) and (19) are similar to equation c⃗ = v⃗+ e⃗which is the GGH-CVP
with c⃗ ∈ R

n, v⃗ ∈ L (B) and e⃗ ∈ {−σ,+σ}n. That means, new CVP variants could be derived
from Equations (18) and (19). With shorter distances ∥p⃗1 − q⃗1∥ and ∥p⃗2 − q⃗2∥, the derived CVP
variants by the Nguyen’s embedding attacks are considered simpler than the GGH-CVP. These
variants are addressed as the NguyenGGH -CVP1 and NguyenGGH -CVP2 respectively. We define
these variants as follows:

Definition 3.6. For n ∈ N, let B ∈ R
n×n be a basis for the lattice L (B) ⊂ R

n, p⃗1, p⃗2 ∈ R
n such that

p⃗1 = q⃗1 + ε⃗1 and p⃗2 = q⃗2 + ε⃗2, where q⃗1, q⃗2 ∈ L (B) , ε⃗1 ∈ {−1, 1}n and ε⃗2 ∈
{
−1

2
,
1

2

}n

,

1. (NguyenGGH -CVP1) Given B and p⃗1, find q⃗1 ∈ L (B) such that ∥p⃗1 − q⃗1∥ =
√
n.

2. (NguyenGGH -CVP2) Given B and p⃗2, find q⃗2 ∈ L (B) such that ∥p⃗2 − q⃗2∥ =
√
n
2 .

Now, the attacks move to the reduction stage. Consider the vectors p⃗1, p⃗2 ∈ R
n and the basis

B ∈ R
n×n as defined in Definition 3.6. The vector

[
p⃗1
1

]
∈ R

n+1 is embedded into the basis B to

form a basis Y1 =

[
p⃗1 b⃗1 b⃗2 . . . b⃗n
1 0 0 . . . 0

]
∈ R

(n+1)×(n+1) for the lattice L′ (Y1) ⊂ R
n+1. On the

other hand, the vector
[
p⃗2
1

]
∈ Rn+1 is embedded into the basis B to form a basis

Y2 =

[
p⃗2 b⃗1 b⃗2 . . . b⃗n
1 0 0 . . . 0

]
∈ R

(n+1)×(n+1) for the other lattice L′ (Y2) ⊂ R
n+1. The following

lemma describes the expected short vectors in the embedded lattices L′ (Y1) and L′ (Y2).

Lemma 3.4. For n ∈ N, let B ∈ R
n×n with columns b⃗1, b⃗2, . . . , b⃗n ∈ R

n be a basis for the lattice
L (B) ⊂ R

n, p⃗1, p⃗2 ∈ Rn such that p⃗1 = q⃗1 + ε⃗1 and p⃗2 = q⃗2 + ε⃗2 where q⃗1, q⃗2 ∈ L (B) , ε⃗1 ∈ {−1, 1}n
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and ε⃗2 ∈
{
−1

2
,
1

2

}n

. If Y1 =

[
p⃗1 b⃗1 b⃗2 . . . b⃗n
1 0 0 . . . 0

]
and Y2 =

[
p⃗2 b⃗1 b⃗2 . . . b⃗n
1 0 0 . . . 0

]
are bases for

the lattices L′ (Y1) and L′ (Y2) respectively, then
[
ϵ⃗1
1

]
and

[
ϵ⃗2
1

]
are short vectors in the lattices L′ (Y1) and

L′ (Y2) respectively.

Searching for the short vectors
[
ϵ⃗1
1

]
∈ L′ (Y1) and

[
ϵ⃗2
1

]
∈ L′ (Y2) are SVP variants. These

variants are defined as the NguyenGGH -SVP1 and NguyenGGH -SVP2 respectively as follows:

Definition 3.7. For n ∈ N, let B ∈ R
n×n with columns b⃗1, b⃗2, . . . , b⃗n ∈ R

n be a basis for the lattice

L (B) ⊂ R
n, while Y1 =

[
p⃗1 b⃗1 b⃗2 . . . b⃗n
1 0 0 . . . 0

]
and Y2 =

[
p⃗2 b⃗1 b⃗2 . . . b⃗n
1 0 0 . . . 0

]
be bases for the

lattices L′ (Y1) and L′ (Y2) respectively, p⃗1, p⃗2 ∈ R
n such that p⃗1 = q⃗1 + ε⃗1 and p⃗2 = q⃗2 + ε⃗2 where

q⃗1, q⃗2 ∈ L (B) , ε⃗1 ∈ {−1, 1}n and ε⃗2 ∈
{
−1

2
,
1

2

}n

,

1. (NguyenGGH -SVP1) Given B and p⃗1, find a non-zero vector δ⃗2 ∈ L′ (Y1) such that
λ1 (L

′ (Y1)) = δ2, and

2. (NguyenGGH -SVP2) Given B and p⃗2, find a non-zero vectorδ⃗3 ∈ L′ (Y2) such that
λ1 (L

′ (Y2)) = δ3,

where λ1 (L
′ (Y1)) , λ1 (L

′ (Y2)) ∈ R
+ denote the first minimum of the embedded lattices L′ (Y1) and

λ1 (L
′ (Y2)) respectively.

Finally, Nguyen’s embedding attacksmove to the solution stage that works to solve the derived
NguyenGGH -SVP1 and NguyenGGH -SVP2. BKZ and pruning algorithms reduce the bases Y1 and
Y2. The following lemma states that the NguyenGGH -CVP1 and NguyenGGH -CVP2 are solvable
once the solution for the derived NguyenGGH -SVP1 and NguyenGGH -SVP2 are respectively ob-
tained:

Lemma 3.5. For n ∈ N, let L′ (Y1) , L
′ (Y2) ⊂ R

n+1 be lattices, ε⃗1, ε⃗2 ∈ R
n be the error vectors in

the NguyenGGH -CVP1 and NguyenGGH -CVP2 respectively and λ1 (L
′ (Y1)) , λ1 (L

′ (Y2)) ∈ R
+ de-

note the first minimum of the lattices L′ (Y1) and L′ (Y2) respectively. Suppose that, the solutions of the
NguyenGGH -SVP1 and NguyenGGH -SVP2 are obtained as δ⃗2 ∈ L′ (Y1) and δ⃗3 ∈ L′ (Y2) respectively

such that λ1 (L
′ (Y1)) = ∥δ⃗2∥ and λ1 (L

′ (Y2)) = ∥δ⃗3∥. If δ⃗2 =

[
ϵ⃗1
1

]
and δ⃗3 =

[
ϵ⃗2
1

]
, then the solution for

the NguyenGGH -CVP1 and NguyenGGH -CVP2 can be obtained.

Lemma 3.6. If the NguyenGGH -CVP1 and NguyenGGH -CVP2 are solved, then the GGH cryptosystem is
broken.

3.3 Lee-Hahn’s embedding attack

Lee-Hahn’s embedding attack consists of a sequence of four stages, namely the guessing, sim-
plification, reduction and solution stages respectively. In the GGH Internet Challenges [4], the
plaintext vectors m⃗ ∈ Zn have entriesmi ∈ [−128, 127] for all i = 1, . . . , n and the used threshold
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parameter is σ = 3. These imply that, the partially decrypted plaintext m⃗2σ ∈ Z
n
2σ is m⃗6 ∈ Z

n
6 .

Due to the modulo reduction with modulus 6, thenm′
i ∈ [0, 5]wherem′

i ∈ m⃗6 for all i = 1, . . . , n.
The partially decrypted plaintext m⃗6 ∈ Z

400
6 are published in [13]. Using this information, the

guessing stage of Lee-Hahn’s embedding attack managed to guess the first k ∈ N actual plaintext
values from m⃗ ∈ Z

400. From the obtained first k-entries of the plaintext m⃗ ∈ Z
n, the attack is

moving to its simplification stage where the plaintext m⃗, partially decrypted plaintext m⃗2σ and
public basis B are all divided into two blocks based on the number k.

The plaintext m⃗ ∈ Zn is represented as m⃗ =

[
m⃗1

m⃗2

]
∈ Zn where m⃗1 =

m1

...
mk

 ∈ Zk and

m⃗2 =

mk+1

...
mn

 ∈ Zn−k. The first sub-vector m⃗1 contains the known first k-entries of the plaintext

m⃗ and the second sub-vector m⃗2 contains the remaining unknown entries of the plaintext m⃗. On
the other hand, the partially decrypted plaintext m⃗2σ ∈ Zn

2σ is represented as

m⃗2σ =

[
m⃗2σ

1

m⃗2σ
2

]
∈ Z

n where m⃗2σ
1 =

m′
1
...
m′

k

 ∈ Z
k
2σ and m⃗2σ

2 =

m
′
k+1
...
m′

n

 ∈ Z
n−k
2σ while the

public basis B ∈ R
n×n is represented as B =

[
B1 B2

]
where B1 =

[⃗
b1 · · · b⃗k

]
∈ R

n×k

and B2 =
[⃗
bk+1 b⃗k+2 · · · b⃗n

]
∈ R

n×(n−k). As described in [9], B2 is a basis for the lattice
L∗ (B2) ⊂ R

n which is a sub-lattice for the original lattice L (B) ⊂ R
n. Now, the encryption

Equation (2) is rewritten as follows,

c⃗−B1m⃗
1 = B2m⃗

2 + e⃗. (20)

The sub-basis B2 and the sub-vector m⃗2
2σ are multiplied as B2m⃗

2
2σ ∈ R

n and then inserted into
Equation (20) as follows,

c⃗−B1m⃗
1 −B2m⃗

2
2σ = B2

(
m⃗2 − m⃗2

2σ

)
+ e⃗. (21)

Since m⃗ ≡ m⃗2σ ( mod 2σ), then m⃗2 ≡ m⃗2
2σ (mod 2σ) holds as well for m⃗2 ∈ m⃗ and

m⃗2
2σ ∈ m⃗2σ . This implies that, there exists h⃗ ∈ Zn−k such that

m⃗2 − m⃗2
2σ = 2σh⃗. (22)

Substituting Equation (22) into Equation (21) yields,

c⃗−B1m⃗
1 −B2m⃗

2
2σ

2σ
= B2h⃗+

e⃗

2σ
. (23)

For simplicity, denote c⃗−B1m⃗1 −B2m⃗
2
2σ

2σ
= t⃗ ∈ R

n. Since the vectors c⃗, B1m⃗1, B2m⃗
2
2σ ∈ R

n

and parameter σ are known, then t⃗ is a known vector. Since B2 ∈ Rn×(n−k) is a basis for the sub-
latticeL∗ (B2) and h⃗ ∈ Zn−k is an unknown integer vector, thenB2h⃗ = u⃗ ∈ L∗ (B2) is an unknown
lattice vector. Finally, the following is an unknown vector,

ϵ⃗ =
e⃗

2σ
∈
{
− σ

2σ
,+

σ

2σ

}n

=

{
−1

2
,
1

2

}n

,
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since e⃗ is an unknown vector. Now, Equation (23) can be rewritten as,

t⃗ = u⃗+ ϵ⃗, (24)

where t⃗ ∈ R
n, u⃗ ∈ L∗ (B2) and ϵ⃗ ∈

{
− 1

2 ,
1
2

}n. According to Proposition 3.1, ∥ϵ⃗∥ = ∥ϵ⃗1∥ =

√
n

2

since ϵ⃗ = ε⃗2 ∈
{
−1

2
,
1

2

}n

. From Equation (24), the LeeHahnGGH -CVP is defined as follows:

Definition 3.8. (LeeHahnGGH -CVP) For n, k ∈ N with k < n, let B ∈ Rn×n with columns
b⃗1, b⃗2, . . . , b⃗n ∈ Rn be a basis for the lattice L (B) ⊂ R

n, B2 ∈ Rn×(n−k) with columns
b⃗k+1, b⃗k+2, . . . , b⃗n ∈ B be a basis for the sub-lattice L∗ (B2) ⊂ R

nandt⃗ ∈ R
n such that t⃗ = u⃗ + ϵ⃗ where

u⃗ ∈ L∗ (B2) and ϵ⃗ =
{
−1

2
,
1

2

}n

. Given B and t⃗, find the vector u⃗ ∈ L∗ (B2) such that ∥t⃗− u⃗∥ =

√
n

2
.

Recall that, the GGH-CVP is to find the vector v⃗ in the n-dimensional lattice L (B) ⊂ R
n such

that c⃗ = v⃗ + e⃗ and ∥c⃗ − v⃗∥ = σn. On the other hand, the LeeHahnGGH -CVP is to find the vector

u⃗ in the (n− k)-dimensional lattice L∗ (B2) ⊂ R
n such that t⃗ = u⃗ + ϵ⃗ and ∥t⃗ − u⃗∥ =

√
n

2
. With

shorter distance and smaller lattice dimension, the LeeHahnGGH -CVP is considered simpler than
the GGH-CVP. Now, the Lee-Hahn’s embedding attack moves to its reduction stage. In this stage,
the embedding technique is used to reduce the LeeHahnGGH -CVP in the (n− k)-dimensional
lattice L∗ (B2) ⊂ R

n to an SVP variant in the (n− k + 1)-dimensional lattice L′ (Z) ⊂ R
n+1. For

that purpose, the vector
[
t⃗
1

]
∈ R

n+1 is embedded into the basis B2 ∈ R
n×(n−k) to form the basis

Z =

[
t⃗ ⃗bk+1

⃗bk+2 . . . b⃗n
1 0 0 . . . 0

]
∈ R

(n+1)×(n−k+1) that spans the embedded lattice L′ (Z). The

Lee-Hahn’s embedding attack also is expecting that the embedded lattice L′ (Z) contains a short
vector. Consider the following lemma:

Lemma 3.7. For n, k ∈ N with k < n, let B ∈ R
n×n with columns b⃗1, b⃗2, . . . , b⃗n ∈ R

n be a basis for
the n-dimensional lattice L (B) ⊂ R

n, B2 ∈ R
n×(n−k) with columns b⃗k+1, b⃗k+2, . . . , b⃗n ∈ B be a basis

for the (n− k)-dimensional lattice L∗ (B2) ⊂ R
n and t⃗ ∈ R

n such that t⃗ = u⃗ + ϵ⃗ where u⃗ ∈ L∗ (B2)

and ϵ⃗ ∈
{
− 1

2 ,
1
2

}n. If Z =

[
t⃗ ⃗bk+1

⃗bk+2 . . . b⃗n
1 0 0 . . . 0

]
∈ R(n+1)×(n−k+1) is a basis for the (n− k + 1)-

dimensional lattice L′ (Z) ⊂ R
n+1, then

[
ϵ⃗
1

]
is a short vector in the lattice L′ (Z).

As stated in Lemma 3.7,
[
ϵ⃗
1

]
is a short vector in the embedded lattice L′ (Z). The Lee-Hahn’s

embedding attack is expecting that this vector is the shortest non-zero vector in the embedded
latticeL′ (Z). Finding the shortest non-zero vector in the embedded latticeL′ (Z) is an SVPvariant.
It is specifically addressed as the LeeHahnGGH -SVP and it is explicitly defined as the following:

Definition 3.9. (LeeHahnGGH -SVP) For n, k ∈ N with k < n, let B ∈ Rn×n with columns
b⃗1, b⃗2, . . . , b⃗n ∈ Rn be a basis for the n-dimensional lattice L (B) ⊂ R

n and

Z =

[
t⃗ ⃗bk+1

⃗bk+2 . . . b⃗n
1 0 0 . . . 0

]
∈ R(n+1)×(n−k+1),

where b⃗k+1, b⃗k+2, . . . , b⃗n ∈ B and t⃗ ∈ Rn, be a basis for the (n− k + 1)-dimensional lattice
L′ (Z) ⊂ R

n+1. Given B and t⃗, find the vector δ⃗4 ∈ L′ (Z) such that λ1 (L
′ (Z)) = ∥δ⃗4∥ where

λ1 (L
′ (Z)) ∈ R+ denotes the first minimum of the lattice L′ (Z).
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Finally, the Lee-Hahn’s embedding attack is moving to its solution stage to solve the derived
LeeHahnGGH -SVP using lattice-reduction algorithm. The next lemma states that the correspond-

ing LeeHahnGGH -CVP is solvable if the solution of the LeeHahnGGH -SVP is obtained as δ⃗4 =

[
ϵ⃗
1

]
.

Lemma 3.8. For n ∈ N, let L′ (Z) ⊂ R
n+1 be a lattice, ϵ⃗ ∈ R

n be the error vectors in the LeeHahnGGH -
CVP and λ1 (L

′ (Z)) ∈ R+ denotes the first minimum of the lattice L′ (Z). Suppose that the solution of the

LeeHahnGGH -SVP is obtained as δ⃗4 ∈ L′ (Z) such that λ1 (L
′ (Z)) = δ4. If δ⃗4 =

[
ϵ⃗
1

]
, then the solution

for the LeeHahnGGH -CVP could be obtained.

Lemma 3.9. If the LeeHahnGGH -CVP is solved, then the GGH cryptosystem is broken.

The implementation of Lee-Hahn’s embedding attack completely decrypted the GGH Internet
Challenge in the lattice dimension of 400 in just about 18 hours. The attack was also launched
toward the GGH cryptosystem in the lattice dimensions of 450, and 500 [9]. The results show that
the more actual plaintext values can be guessed, the more powerful the attack could perform.

4 Performances Comparison Between the Original, Nguyen’s and
Lee-Hahn’s Embedding Attacks

The best achievement of the original embedding attacks is breaking the GGH cryptosystem in
the dimension of 200 [5]. The Nguyen’s attacks with modulus σ defeated the GGH cryptosystem
in the lattice dimension of 350 in about 21 hours[13]. The performance becomes even better when
the modulus 2σ is used where in the same lattice dimension, the GGH cryptosystem is defeated in
just about 4 hours [13]. Despite using the same strategy, using twodifferentmoduli resulted in two
different performances. The performance ofNguyen’s embedding attacks using themodulus 2σ is
much better than themodulus σ. Recall that the reduction stage of the original embedding attacks
is launched towards the GGH-CVP. In contrast, the reduction stage of the Nguyen embedding
attacks is launched towards theNguyenGGH -CVP1 andNguyenGGH -CVP2. As a result, Nguyen’s
embedding attacksworkedmuch better than the original embedding attacks. Simplification of the
GGH-CVP plays a crucial role in Nguyen’s embedding attacks.

In the original embedding attacks, lattice reduction algorithms are deployed to solve the GGH-
SVP. In the Nguyen’s embedding attacks, these algorithms are deployed to solve the NguyenGGH -
SVP1 and NguyenGGH -SVP2. The results indicate that these algorithms performed better in solv-
ing theNguyenGGH -SVP1 andNguyenGGH -SVP2 compared to theGGH-SVP. The performance of
lattice-reduction algorithms is influenced by various factors including theoretical (mathematical)
and practical (computer architecture) factors. In the context of this study, only the mathemati-
cal factors will be discussed while the practical factors are beyond the interest of this study. The
mathematical factors to be considered are the lattice dimension n ∈ N and the expected gap in the
embedded latticesL′ (X) , L′ (Y1) andL′ (Y2). In terms of lattice dimensionn, the lattice-reduction
algorithms are performed on the bases X, Y1, Y2 ∈ R(n+1)×(n+1) that span the embedded lattices
L′ (X) , L′ (Y1) and L′ (Y2) respectively. Note that, these bases consist of the same number of
basis vectors. Each basis consists of (n+ 1) vectors and each vector have (n+ 1) entries. This
implies that, the embedded lattices L′ (X) , L′ (Y1) and L′ (Y2) are full-rank lattices with similar
dimensions, i.e., dim (L′ (X)) = dim (L′ (Y1)) = dim (L′ (Y2)) = n + 1. This indicates that lat-
tice dimension is not the main factor that caused the original and Nguyen’s embedding attacks to
perform differently. Nevertheless, there is a similarity that could be observed with regard to the
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lattice dimensions. The higher the lattice dimension n is, the longer time is consumed to solve the
derived SVP variant.

As defined in Definition 2.4, gap in the lattice L is measured as gap (L) = λ2 (L)
λ1 (L)

where λ1 (L)

is the norm of the shortest vector in the lattice L and λ2 (L) is the norm of the second shortest
vector in the lattice L. Finding such vectors in the lattice L is an SVP.

As proven before, the embedded lattices L′ (X) , L′ (Y1) and L′ (Y2) are expected to contain short

vectors δ⃗1 =

[
e⃗
1

]
∈ L′(X), δ⃗2 =

[
ϵ⃗1
1

]
∈ L′(Y1) and δ⃗3 =

[
ϵ⃗2
1

]
∈ L′(Y2) respectively. The derived

GGH-SVP, NguyenGGH -SVP1 and NguyenGGH -SVP2 are considered solved once these vectors
are obtained by the lattice-reduction algorithms. Thus, the norm of the vectors δ⃗1, δ⃗2 and δ⃗3 are
considered as the first minimum of the embedded lattices L′ (X) , L′ (Y1) and L′ (Y2) respectively,
i.e., λ1 (L

′ (X)) = ∥δ⃗1∥, λ1 (L
′ (Y1)) = ∥δ⃗2∥ and λ1 (L

′ (Y2)) = ∥δ⃗3∥.

Note that, the embedded latticesL′ (X) , L′ (Y1) andL′ (Y2) are spanned by the basesX,Y1 and Y2

respectively. These bases have almost similar structure with the only difference is the embedded

vectors
[
c⃗1
1

]
,

[
p⃗1
1

]
,

[
p⃗2
1

]
∈ R

n+1 in the bases X,Y1 and Y2 respectively. As done in [13] and [9],

the shortest vector in the lattice L (B) is considered as the second shortest vector in the embedded
lattices L′ (X) , L′ (Y1) and L′ (Y2) respectively, i.e.,

λ2 (L
′ (X)) = λ2 (L

′ (Y1)) = λ2 (L
′ (Y2)) = λ1 (L (B)) .

Therefore, the expected gap of the latticesL′ (X) , L′ (Y1) andL′ (Y2) are obtained as the following:

gap (L′ (X)) =
λ2 (L

′ (X))

λ1 (L′ (X))
=

λ1(L(B))

∥δ⃗1∥
∈ R+, (25)

gap (L′ (Y1)) =
λ2 (L

′ (Y1))

λ1 (L′ (Y1))
=

λ1(L(B))

∥δ⃗2∥
∈ R+, (26)

gap (L′ (Y2)) =
λ2 (L

′ (Y2))

λ1 (L′ (Y2))
=

λ1(L(B))

∥δ⃗3∥
∈ R+. (27)

Recall that, we have ∥δ⃗1∥ =
√
nσ2 + 1 since δ⃗1 =

[
e⃗
1

]
and e⃗ ∈ {−σ,+σ}n. For δ⃗2 =

[
ϵ⃗1
1

]
, we have

∥δ⃗2∥ =
√

(±1)2 + (±1)2 + . . .+ (±1)2︸ ︷︷ ︸
added n times

+1 =
√
n+ 1,

since ϵ⃗1 ∈ {−1,+1}n. For δ⃗3 =

[
ϵ⃗2
1

]
, we have

∥δ⃗3∥ =

√√√√√√
(
±1

2

)2

+

(
±1

2

)2

+ . . .+

(
±1

2

)2

︸ ︷︷ ︸
added n times

+ 1 =

√
n

4
+ 1.

since ϵ⃗2 ∈
{
−1

2
,+

1

2

}n

. Recall that n, σ ∈ N. Therefore,

∥δ⃗3∥ < ∥δ⃗2∥ < ∥δ⃗1∥.
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Since the numerators are equal, then

λ1(L(B))

∥δ⃗1∥
<

λ1(L(B))

∥δ⃗2∥
<

λ1(L(B))

∥δ⃗3∥
,

and

gap (L′ (X)) < gap (L′ (Y1)) < gap (L′ (Y2)) .

Observe that, the gap (L′ (Y2)) has the smallest denominator ∥δ⃗3∥ while the gap (L′ (X)) has
the largest denominator ∥δ⃗1∥. Consequently, the embedded lattice L′ (Y2) derived by Nguyen’s
embedding attack with modulus 2σ has the largest expected gap. In contrast, the embedded lat-
tice L′ (X) derived from the original embedding attacks has the smallest expected gap. With the
smallest gap (L′ (X)), the solution stage of the original embedding attacks only managed to solve
the derived GGH-SVP in the lattice dimensions of 200 and below. With larger gap (L′ (Y1)), the so-
lution stage of the Nguyen’s embedding attacks with modulus σ solved the derived NguyenGGH -
SVP1 in the lattice dimension of 350 in about 21 hours. Finally, the largest gap (L′ (Y2)) in the
embedded lattice L′ (Y2) made the solution stage of the Nguyen’s embedding attacks with mod-
ulus 2σ solved the NguyenGGH -SVP2 in the lattice dimension of 350 in just about 4 hours. Based
on these findings, the lattice gap is identified as the main factor that caused a difference in the
performance of the embedding attacks in breaking the GGH cryptosystem.

Although Nguyen’s and Lee-Hahn’s embedding attacks use an almost similar strategy, there
is a significant difference between the ability of these attacks to break the GGH cryptosystem. To
investigate the factor that triggered this difference, Nguyen’s 2σ embedding attack is compared
with Lee-Hahn’s embedding attack. As done before, two factors that majorly influence the per-
formance of the lattice-reduction algorithm in the solution stage of these attacks are considered.
The first factor is the lattice dimension n. Recall that, the Nguyen’s embedding attack formed the
(n+ 1)-dimensional embedded lattice L′ (Y2)while the Lee-Hahn’s embedding attack formed the
(n− k + 1)-dimensional embedded lattice L′ (Z). Since , k ∈ N where k < n, then the embedded
lattice L′ (Z) has smaller dimension compared to the embedded lattice L′ (Y2). With smaller di-
mension, the implementation of lattice-reduction algorithm on the embedded latticeL′ (Z)would
be advantageous compared to its implementation on the embedded lattice L′ (Y2). This could also
be why Lee-Hahn’s embedding attack performs better when the value of k is bigger.

The second factor to be considered is the gap in the embedded lattices L′ (Y2) and L′ (Z). Re-

call that, the expected gap in the lattice L′ (Y2) is measured as gap (L′ (Y2)) =
λ1(L(B))

∥δ⃗3∥
where

λ1 (L (B)) is the first minimum of the lattice L (B) and δ⃗3 is a short vector in the embedded lat-

tice L′ (Y2). Proposition 3.1 proved that ∥ϵ2∥ =

√
n

2
where ε⃗2 ∈

{
−1

2
,
1

2

}n

. Recall that, we have

∥δ⃗3∥ =

√
n

4
+ 1 for δ⃗3 =

[
ϵ⃗2
1

]
. On the other hand, Lemma 3.8 stated that δ4 =

[
ϵ⃗
1

]
is a short vector

in the embedded lattice L′ (Z). It is the desired solution for the LeeHahnGGH -SVP. Thus, ∥δ⃗4∥
is considered as the first minimum of the embedded lattice L′ (Z), i.e., λ1 (L

′ (Z)) = ∥δ⃗4∥. Since
the basis Z is constructed mainly using the basis B2 for the sub-lattice L∗ (B2), then the shortest
vector in the lattice L∗ (B2) is considered as the second minimum of the embedded lattice L′ (Z),
i.e., λ2 (L

′ (Z)) = λ1 (L
∗ (B2)). Hence, the expected gap of the embedded lattice L′ (Z) is obtained

as follows:

gap (L′ (Z)) =
λ2 (L

′ (Z))

λ1 (L′ (Z))
=

λ1 (L
∗ (B2))

λ1 (L′ (Z))
=

λ1(L
∗(B2))

∥δ⃗4∥
∈ R+, (28)
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Since ϵ⃗ = ε⃗2 ∈
{
−1

2
,
1

2

}n

, then ∥δ⃗4∥ = ∥δ⃗3∥ =

√
n

4
+ 1. Despite having different numerators, the

gap (L′ (Y2)) and gap (L′ (Z)) share a common denominator value. As described by [9], the fast
growth of the length of the shortest vector predicted by the Gaussian Heuristic is mainly due to
the very fast growth of the determinant. Since the basis B2 ∈ R

n×(n−k) is a non-square matrix,
then det (L∗ (B2)) =

√
det

(
B2BT

2

)
. On the other hand, det (L (B)) = |det (B)| since the basis

B ∈ R
n×n is a square matrix. Using the Gaussian Heuristic, the shortest vectors in the lattices

L (B) and L∗ (B2) are estimated respectively as the following:

λ1 (L (B)) ≈
√

n

2πe
(det (L (B)))

1
n =

√
n

2πe
(|det (B)|)

1
n ,

and

λ1 (L
∗ (B2)) ≈

√
n− k

2πe
(det (L∗ (B2)))

1
n−k =

√
n− k

2πe

((
det

(
B2B

T
2

)) 1
2

) 1
n−k

.

Since k < n and B2 is a sub-matrix from the basis B, then λ1 (L
∗ (B2)) > λ1 (L (B)). Note that,

∥δ⃗4∥ = ∥δ⃗3∥. Therefore,

λ1 (L
∗ (B2))

∥δ⃗4∥
>

λ1(L(B))

∥δ⃗3∥
,

gap (L′ (Z)) > gap (L′ (Y2)) .

With smaller dimension and larger expected gap of the embedded lattice L′ (Z) compared to
the embedded lattice L′ (Y2), implementation of a lattice-reduction algorithm in the solution stage
of Lee-Hahn’s embedding attack performed better. These factors allowed Lee-Hahn’s embedding
attack to break theGGHcryptosystem in the lattice dimensions of 400 and beyond, whileNguyen’s
embedding attack failed.

5 Result and Discussion

Although Lee-Hahn’s embedding attack emerges as the most powerful attack on the GGH
cryptosystem, it depends heavily onNguyen’s embedding attack to be completely executed. With-
out the partially decrypted plaintext m⃗2σ ∈ Zn

2σ which is obtained byNguyen’s embedding attack,
the guessing stage of the Lee-Hahn’s embedding attack could not be done, and the k-actual plain-
text values could not be obtained. Consequently, the simplification stage of Lee-Hahn’s embed-
ding attack could not be performed, and the GGH-CVP remains in its original form. Nguyen’s
embedding attack is crucial in developing Lee-Hahn’s embedding attack. That means Nguyen’s
embedding attack could be considered a fatal attack on the GGH cryptosystem. Furthermore, the
factors that made the performance of the original, Nguyen’s and Lee-Hahn’s embedding attacks
contrast from each other are also investigated. As a result, the performance of these attacks is
mainly determined by the efficiency of the implemented lattice algorithms in the solution stage of
these attacks. The more efficient lattice-reduction algorithms could perform, the more powerful
these attacks could perform. Performance of these algorithms is highly influenced by the dimen-
sion and gap of the embedded lattices L′ (X) , L′ (Y1) , L

′ (Y2) and L′ (Z) that are formed by those
attacks. The findings are summarized as follows:

687



A. Mandangan et al. Malaysian J. Math. Sci. 17(4): 673–690(2023) 673 - 690

Table 1: Comparison in terms of dimension of the embedded lattices.

Embedding attack Original Nguyen’s σ Nguyen’s 2σ Lee-Hahn’s
Embedded lattice L′ (X) L′ (Y1) L′ (Y2) L′ (Z)

Lattice dimension n+ 1 n+ 1 n+ 1 n− k + 1

Table 2: Comparison in terms of expected gap of the embedded lattices.

Expected gaps Attacks Winner
gap (L′ (Y2)) > gap (L′ (X)) Nguyen’s 2σ Nguyen’s 2σ attack

vs
Original embedding

gap (L′ (Y2)) > gap (L′ (Y1)) Nguyen’s 2σ Nguyen’s 2σ attack
vs

Nguyen’s σ
gap (L′ (Z)) > gap (L′ (Y2)) Nguyen’s 2σ Lee-Hahn’s attack

vs
Lee-Hahn’s

Table 3: Comparison in terms of norm of the expected shortest vector.

Embedding attacks Original Nguyen’s σ Nguyen’s 2σ Lee-Hahn’s

Expected shortest vector δ⃗1 =

e⃗
1

 δ⃗2 =

ϵ⃗1
1

 δ⃗3 =

ϵ⃗2
1

 δ⃗4 =

ϵ⃗
1


Norm of shortest vector

√
nσ2 + 1

√
n+ 1

√
n

4
+ 1

√
n

4
+ 1

Observe that, the embedded lattice L′ (Z) has smaller dimension then lattice L′ (Y2) as shown
in Table 1. In addition, the expected gap in lattice L′ (Z) is larger than the expected gap in lattice
L′ (Y2), as provided in Table 2. Consequently, Lee-Hahn’s embedding attack becomes more pow-
erful than Nguyen’s embedding attack. Furthermore, Table 3 shows that the vectors δ⃗4 ∈ L′ (Z)

and δ⃗3 ∈ L′ (Y2) share the shortest norms. The norm of these shortest vectors δ⃗3 and δ⃗4 play cru-
cial roles in determining the lattice gap. With shortest norms ∥δ⃗3∥ and ∥δ⃗4∥, the Nguyen’s 2σ and
Lee-Hahn’s embedding attacks outperformed the other two embedding-based attacks.

6 Conclusion

The original, Nguyen’s, and Lee-Hahn’s embedding attacks have the reduction and solution
stages in common. The simplification stage in Nguyen’s and Lee-Hahn’s embedding attacks con-
siderably impacted the ability of these attacks to break the GGH cryptosystem. Without this stage,
the GGH-CVP remains in its original form, and the embedding attack on this problem will only
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manage to reach lattice dimensions not more than 200. As shown before, the shorter the norm of
the error vector in the GGH-CVP variants, the larger the expected gap of the embedded lattices.
By maintaining the norm as σ

√
n, then the size of the lattice gap permits the embedding attacks

to work only in low lattice dimensions as previously faced by the original embedding attacks for
solving the GGH-CVP. If these countermeasures could be implemented, any strategy in future
which aims to improve the embedding attack’s ability to break the GGH cryptosystem could be
circumvented. Finally, Nguyen’s embedding attack is the fatal attack on the GGH cryptosystem.
Thus, the security of the GGH cryptosystem could be upgraded by thwarting Nguyen’s embed-
ding attack. The flaw exploited by Nguyen’s embedding attack must be revamped. Strengthening
the security of the GGH cryptosystem to make it resistant to Nguyen’s embedding attack would
potentially make the GGH cryptosystem survives.
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